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This paper describes a compact matrix formulation for the steady-state
analysis of structural±acoustic systems. A new approach to the problem is
adopted that uses impedance and mobility methods commonly found in the
analysis of purely structural or purely acoustic systems. The advantages of the
approach are that an investigation into the coupling between the structural and
acoustic systems is made easier, and it facilitates improved physical insight into
the behaviour of structural±acoustic systems. In addition, because the equations
describing the complete system are in matrix form, they can be solved easily
using a computer. Due to the mismatch of dimensions between structural
mobility and acoustic impedance, new terms are introduced for the coupled
system analysis; the coupled acoustic impedance and the coupled structural
mobility. F±u (force±velocity) and p±Q (pressure±source strength) diagrams are
also introduced for impedance and mobility representations of a complete
coupled system. Experimental work is presented, in which a simple rectangular
acoustic enclosure with ®ve rigid and one ¯exible side was used, to validate the
analytical model and to investigate structural±acoustic coupling.

# 1999 Academic Press

1. INTRODUCTION

The interaction between an acoustic space and its ¯exible boundaries is an
important problem in the ®eld of acoustics. Analysis of this interaction has been
of interest to many researchers during the last half a century, as reviewed by Pan
et al. [1, 2] and Hong and Kim [3]. A comprehensive theoretical model for
coupled responses in a structural±acoustic coupled system has been presented by
Dowell et al. [4]. They provided solutions for coupled responses in terms of the
modal characteristics of the uncoupled structural and acoustic systems. This
paper considers the analysis of a similar coupled system, but uses the impedance-
mobility approach, which results in a compact matrix formulation. The
impedance-mobility approach is well known to electrical engineers and physicists
and is particularly applicable to the analysis of coupled systems, which are
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98 S. M. KIM AND M. J. BRENNAN

composed of several individual linear systems. Each system at the connection
can be characterised by impedance or mobility, and the dynamics of a complete
coupled system can be described at some or all of the points of interest. They are
particularly useful concepts to judge the degree of coupling when two or more
systems are connected, and are often used for the analysis of electrical systems
[5]. In the 1950s, the method was adapted by mechanical engineers, who applied
it to mechanical vibration problems [6]. A general theory of the approach and
application examples to mechanical systems can be found in reference [7].
Furthermore, the approach has been successfully applied to various sound and
vibration problems, such as the coupling between actuators and substructures,
sound radiation from a plate to the acoustic free ®eld, and wave propagation
through media with different physical properties, as can be found in many
textbooks, for example references [8±10].
In this paper, the classical theory by Dowell et al. [4] is re-examined from the

impedance-mobility point of view, and a general method of structural±acoustic
coupling analysis is presented. The basic theory of the impedance±mobility
approach is considered in Section 2 with a simple conceptual structural±acoustic
coupled system. In fact this represents the coupling between a single structural
mode and a single acoustic mode. The approach is extended in Section 3 to
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Figure 1. Impedance and mobility representation of a conceptual structural±acoustic system
excited by (a) structural excitation, force F, and (b) acoustic excitation, source strength Q. (a) F±u
representation for structural excitation; (b) p±Q representation for acoustic excitation.
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analyse general structural±acoustic coupled systems in modal co-ordinates. The
methodology can also be applied to structural±acoustic systems described by
their physical co-ordinates, and this has been described in detail by Kim [11]. A
criterion to establish whether or not a structural±acoustic system is strongly or
weakly coupled is proposed in Section 3, and this criterion is presented in terms
of acoustic impedance and structural mobility. In Section 4, some experimental
results are presented that validate the analytical model developed, and illustrate
the effects of structural±acoustic coupling. Finally, some conclusions are drawn
in Section 5. There is also an Appendix to this paper that gives the relevant
equations for the model problem used in the simulations and the experimental
work.

2. BASIC THEORY OF THE IMPEDANCE-MOBILITY APPROACH

In this section a simple model of a conceptual structural±acoustic system is
described, which forms the basis of the comprehensive model of a general
structural±acoustic system discussed in Section 3. The conceptual model could,
in fact, be used to describe the behaviour of a single structural mode coupled
with a single acoustic mode.
In a single input structural system, the frequency domain quantities of

mobility YS and impedance ZS are de®ned as [7]:

YS � u

F
, ZS � F

u
, �1a, b�

where the subscript S denotes the structural system and F and u are applied
force and resulting velocity, respectively. In a single input acoustic system, the
impedance and mobility are de®ned as [9]:

ZA � p

Q
, YA � Q

p
, �2a, b�

where the subscript A denotes the acoustic system and Q and p are the source
strength and acoustic pressure, respectively. It is important to note that the
dimensions of impedance and mobility in structural and acoustic systems are
different; the dimension of structural impedance being [Ns/m] and the dimension
of acoustic impedance being [Ns/m5]. This dimension difference makes the
theoretical description for structural±acoustic coupled systems different from
that for general mechanical systems considered in textbooks, for example
reference [7].
Consider the conceptual structural±acoustic coupled system consisting of

impedances ZS and ZCA excited by a single known structural force F as shown in
Figure 1(a). The impedance ZS is de®ned as the uncoupled structural impedance
and is the ratio of the effective force applied to the structure FS to the velocity u.
The impedance ZCA represents the acoustic reaction force FA to the structural
input velocity u and may be de®ned as the coupled acoustic impedance. Thus,

ZS � FS

u
, ZCA � FA

u
: �3a, b�
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Using the force equilibrium condition, F=FS+FA, one gets an expression for
the velocity of the structure u in terms of the structural mobility YS and the
coupled acoustic impedance ZCA.

u � YS

1� YSZCA
F, �4�

where YS=1/ZS. When a single acoustic source of strength Q excites the
conceptual structural±acoustic coupled system, it can be represented by the series
combination of mobilities YA and YCS as shown in Figure 1(b). Hereafter it is
called the p±Q representation since the physical parameters are pressure and
source strength, while the diagram in Figure 1(a) is called the F±u representation,
i.e., the force±velocity representation. The mobility YA is de®ned as the
uncoupled acoustic mobility and is the ratio of the effective source strength QA

acting on the acoustic system to the acoustic pressure p. The mobility YCS

represents the induced structural source strength QS to the acoustic pressure p
and is de®ned as the coupled structural mobility. thus,

YA � QA

p
, YCS � ÿQS

p
: �5a, b�

Note the minus sign of YCS because the direction of QS is de®ned opposite to the
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Figure 2. F±u and p±Q representation for the conceptual structural±acoustic system with both
structural and acoustic excitation. (a) F±u representation; (b) p±Q representation.
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acoustic pressure. Since both source strengths are acting toward the acoustic
system, the effective source strength acting on this system is QA=Q+QS. Thus,

p � ZA

1� ZAYCS
Q, �6�

where ZA=1/YA. When there is both force and acoustic excitation, a coupling
factor, which connects the F±u and the p±Q representations is required. For the
conceptual system studied in this section an area S may be simply used to match
the dimensions. Thus, the relationship between the coupled and uncoupled
acoustic impedances and the coupled and uncoupled structural mobilities are
given by:

ZCA � S2ZA, YCS � S2YS: �7a, b�
Conversions between the F±u representation and the p±Q representation can be
achieved by using Thevenin and Norton's theorems [7]. The F±u and the p±Q
representations for the conceptual structural±acoustic system subject to both
structural and acoustic excitation are given in Figure 2(a) and (b), respectively.
The equations relating the structural velocity and the acoustic pressure to the
applied force and acoustic strength are given by:

u � 1

1� YSZCA
YS�Fÿ SZAQ�, p � 1

1� ZAYCS
ZA�Q� SYSF �: �8a, b�

These are the key equations for the analysis of general coupled systems, and can
be extended to vector and matrix forms to deal with multi-degree-of-freedom
systems with several excitation points. In Section 3 these equations are expanded
to model a general structural±acoustic system.
If the system is excited by a structural source and the structure responds

predominantly as though it was in vacuo then the coupled acoustic impedance
has a negligible effect on the structure. In this case the system is said to be
weakly coupled. Moreover, if the system is excited acoustically and the cavity
responds predominantly as though the structure were in®nitely rigid it is also
said to be weakly coupled. These conditions can be examined mathematically
using equations (8a) and (8b). If one sets Q=0 in equation (8a) then u=YSF
provided that |YSZCA|5 1 so that one can set YSZCA=0. If one sets F=0 in
equation (8b) then p=ZAQ provided that |ZAYCS |5 1 so that one can set
ZAYCS=0. Noting the relationship between the coupled and the uncoupled
acoustic impedance and structural mobility in equations (7a) and (7b), one can
see that YSZCA=ZAYCS, and thus the condition for weak coupling is
independent of the type of excitation. If there is both structural and acoustic
excitation in a weakly coupled conceptual system then the equations for the
structural velocity and acoustic pressure are given by

u � YS�Fÿ SZAQ�, p � ZA�Q� SYSF�: �8c, d�
The F±u and the p±Q representations for a weakly coupled conceptual
structural±acoustic system are shown in Figure 3(a) and (b), respectively.
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3. STRUCTURAL±ACOUSTIC COUPLING THEORY IN MODAL
COORDINATES

In this section the impedance and mobility approach described in Section 2 is
used to analyse the dynamic behaviour of an arbitrary shaped enclosure
surrounded by a ¯exible structure and an acoustically rigid wall such as that
shown in Figure 4. The acoustic source strength density function s(x, o) and the
force distribution function f(y, o) excite the cavity and the ¯exible structure,
respectively. Co-ordinate x is used for the acoustic ®eld in the cavity, and co-
ordinate y is used for vibration on the structure.
It is assumed that coupled responses can be described by ®nite sets of

uncoupled acoustic and structural modes. The uncoupled modes are the rigid-
walled acoustic modes of the cavity and the in vacuo structural modes of the
structure. Full coupling is considered between the ¯exible structure and the
acoustic cavity system. However, weak coupling is assumed between the ¯exible
structure and the acoustic ®eld outside the cavity. This is because it is assumed
that the vibration of the structure is not in¯uenced by the radiated acoustic ®eld
outside the cavity.
The acoustic pressure and the structural vibration are described by the

summation of N and M modes, respectively. Hence, both the acoustic pressure p
at x inside the enclosure and the structural vibration velocity u at y are given by
[4]:
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Figure 3. F±u and p±Q representations for a weakly coupled conceptual structural±acoustic
system with both structural and acoustic excitation. (a) F±u representation; (b) p±Q represen-
tation.
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p�x, o� �
XN
n�1

cn�x�an�o� � CCCTa, �9a�

u�y, o� �
XM
m�1

fm�y�bm�o� � FFFTb, �9b�

where, the N length column vectors CCC and a consist of the array of uncoupled
acoustic mode shape functions cn(x) and the complex amplitude of the acoustic
pressure modes an(o), respectively. Likewise the M length column vectors FFF and
b consist of the array of uncoupled vibration mode shape functions fm(y) and
the complex amplitude of the vibration velocity modes bm(o), respectively. The
superscript T denotes the transpose. The mode shape functions cn(x) and fm(y)
satisfy the orthogonal property in each uncoupled system, and are normalised as
follows:

V �
�
V

c2
n�x� dV, Sf �

�
Sf

f2
m�y� dS, �10a, b�

where V and Sf are the volume of the cavity and the surface area of the ¯exible
structure, respectively. The complex amplitude of the nth acoustic mode under
structural and acoustic excitation is given by [4, 12]:

an�o� � roc
2
o

V
An�o�

�
V

cn�x�s�x, o� dV�
�
Sf

cn�y�u�y, o� dS
 !

�11�

where r0 and co denote the density and the speed of sound in air, respectively.
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Figure 4. A structural±acoustic coupled system with structural excitation f(y, o) and acoustic
excitation s(x, o).
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The function s(x, o) denotes the acoustic source strength density function in the
cavity volume V, and u(y, o) denotes the normal velocity of the surrounding
¯exible structure of surface area Sf. The two integral expressions inside the
bracket represent the nth acoustic modal source strength contributed from s(x, o)
and u(y, o), respectively. The acoustic mode resonance term An(o) is given by:

A1�o� � 1

1=Ta � jo
, when n � 1 �12a�

and

An�o� � jo
o2

n ÿ o2 � j2znono
, when n 6� 1, �12b�

where Ta is the time constant of the ®rst mode [13], and on and zn are the
natural frequency and damping ratio of the nth acoustic mode, respectively.
Substituting equation (9b) into equation (11) and introducing the generalised
acoustic source strength qn=

R
V cn(x)s(x, o)dV, gives:

an�o� � roc
2
0

V
An�o� qn �

XM
m�1

Cn,m � bm�o�
 !

, �13�

where Cn,m represents the geometric coupling relationship between the uncoupled
structural and acoustic mode shape functions on the surface of the vibrating
structure Sf and is given by:

Cn,m �
�
Sf

cn�y�fm�y� dS: �14�

Thus, the modal acoustic pressure vector a can be expressed as:

a � Za�q� qs�, �15�
where q is the N length modal source strength vector and qs=Cb is the modal
source strength vector due to vibration of the structure, which acts as a set of
acoustic sources on the ¯exible structure. The M length b is the complex
vibration modal amplitude vector and the (N6M) matrix C is the structural±
acoustic mode shape coupling matrix. Za � Aroc

2
o=V is an (N6N) diagonal

matrix de®ned as the uncoupled acoustic modal impedance matrix, which
determines the relationship between the acoustic source excitation and the
resultant acoustic pressure in modal co-ordinates of the acoustic system. The
uncoupled modal impedance matrix is diagonal because of the orthogonal
property of uncoupled modes. The matrix A is a (N6N) diagonal matrix in
which each (n, n) diagonal term consists of An.
If one assumes that the ¯exible structure in Figure 4 is an isotropic thin plate,

the complex vibration velocity amplitude of the mth mode can be expressed as
[4]:

bm�o� � 1

rshSf
Bm�o�

�
Sf

fm�y� f �y, o� dSÿ
�
Sf

fm�y, o�r�y, o� dS
 !

, �16�
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where, rs is the density of the plate material, h is the thickness of the plate, Sf is
the area of the plate, and f (y, o) and p(y, o) denote the force distribution
function and the cavity acoustic pressure distribution on the surface of the plate,
respectively. The two integral equations in the bracket represent the generalised
mth vibration modal force due to f(y, o) and p(y, o), respectively. Since the
directions of the external force and acoustic pressure are de®ned to be opposite,
there is a minute sign in front of the second integral term in the bracket. The
structural mode resonance term Bm(o) can be expressed as:

Bm�o� � jo
o2

m ÿ o2 � j2zmomo
, �17�

where om and zm are the natural frequency and the damping ratio of the mth
mode, respectively. Substituting equation (9a) into equation (16) and introducing
the generalised modal force gm=

�
Sf
fm(y)f(y, o)dS, gives:

bm�o� � 1

rshSf
Bm�o� gm ÿ

XN
n�1

CT
n,m
� an�o�

 !
�18�

where CT
n;m � Cm;n. Thus, the modal vibration amplitude vector b can be

expressed as:

b � Ys�gÿ ga�, �19�
where g is the generalised modal force vector due to the external force
distribution f(y, o), and ga=CTa is the modal force vector acting on the
acoustic system, which is the reaction force due to the acoustic pressure
¯uctuation. Ys=B/(rshSf) is the (M6M) diagonal matrix de®ned as the
uncoupled structural modal mobility matrix which determines the relationship
between structural excitation and the resultant structural velocity response in
modal co-ordinates of the uncoupled structural system. As with the uncoupled
acoustic impedance matrix Za, note that Ys is a diagonal matrix. The matrix B is
a (M6M) size diagonal matrix in which each (m, m) diagonal term consists of
Bm, C

T is the transpose matrix of C, and the M length vector g is the generalised
modal force vector due to the external force distribution f(y, o). Combining
equations (15) and (19), the acoustic and structural modal amplitude vectors a
and b can be expressed in terms of the modal excitation vectors q and g:

a � �I� ZaCYsC
T�ÿ1Za�q� CYsg�, �20a�

b � �I� YsC
TZaC�ÿ1Ys�gÿ CTZaq�: �20b�

Equations (20a) and (20b) can be rewritten using the impedance-mobility
approach to enable a comparison with the simple conceptual system discussed in
Section 2. If one assumes that there is only structural excitation (q=0) and
substitute for qs=Cb in equation (15) one gets a=ZaCb. Combining this with
the expression for the acoustic reaction force vector, ga=CTa, gives:

ga � Zcab, �21�
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where Zca=CTZaC is de®ned as the (M6M) size symmetric coupled acoustic
modal impedance matrix, which determines the acoustic reaction force ga in
modal co-ordinates induced by structural vibration b.
Likewise, if one substitutes for ga=CTa in equation (19), and assumes that

there is only acoustic excitation (g= 0), one gets b=ÿYsC
Ta. Combining this

with the expression for the reaction source strength vector, qs=Cb, gives:

qs � ÿYcsa, �22�
where Ycs=CYsC

T is de®ned as the (N6N) size symmetric coupled structural
modal mobility matrix which determines the induced source strength on the
¯exible structure qs induced by acoustic excitation a. Zca and Ycs are the
equivalent matrix forms of the expressions used in the conceptual model given in
equations (3b) and (5b), respectively. Unlike Za and Ys, note that the coupled
matrices Zca and Ycs are symmetric but non-diagonal. The coupled responses of
the structure±acoustic system given in equation (20a,b) can thus be rewritten
using the de®nitions of Zca and Ycs to give:

a � �I� ZaYcs�ÿ1Za�q� CYsg�, �23a�

b � �I� YaZca�ÿ1Ys�gÿ CTZaq�: �23b�
The above equations are a compact description of the classical theory for

b

ZcaYs

CTZaqg

qs

ZaYcs

CYsg

a

q

(b)

(a)

Figure 5. F±u and p±Q representations in modal co-ordinates of a structural±acoustic system
with both structural and acoustic excitation. (a) F±u representation; (b) p±Q representation.
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calculating the coupled responses in a structural±acoustic coupled system subject
to both structural and acoustic excitation. Because they are of vector±matrix
form these equations can be readily solved using a computer. When the coupling
between a single acoustic mode and a single structural mode is considered, it can
be easily seen that the coupled responses are the same as for the conceptual
model described by equations (8a) and (8b). Equivalent F±u and p±Q
representations of the coupled system are shown in Figure 5. The coupling factor
which corresponds to the area S in Section 2 is the structural±acoustic mode
shape coupling matrix C or CT, whose elements have the dimensions of area
[m2]. To calculate the acoustic pressure or the structural velocity the modal
amplitude vectors determined using equations (23a) and (23b) have to be
substituted into equations (9a) and (9b), respectively.
Following the analysis in Section 2, the criteria for weak coupling is given as

[I+YsZca]1 [I] for structural response and [I+ZaYcs]1 [I] for acoustic
response. This means that for weakly coupled systems one can set YsZca= 0 or
ZaYcs= 0 in equations (23a) and (23b), respectively. These two criteria generally
have different matrix dimensions. However, it does not necessarily mean that
both criteria must be satis®ed for the responses considered to be weakly coupled
when the system is excited by both structural and acoustic sources; one is just a
description for the F±u representation and the other is for the p±Q
representation.
The criteria for weak coupling can be rewritten by extracting physical

quantities of the system, i.e., the acoustic bulk stiffness Ka and the mass of the
structure Ms. Noting that Ys=B/(rshSf), Zca=CTZaC, Za=Aroc

2
o=V and

Ycs=CYsC
T, the coupling terms can be written as:

YsZca � Ka

Ms
BC 0TAC 0, ZaYcs � Ka

Ms
AC 0BC 0T, �24a, b�

where C 0=C/Sf. Ka is the bulk stiffness of the cavity when the ¯exible structure
vibrates as a rigid body and is given by Ka � �roc2o=V�S2

f . For a ¯exible plate,
Ms=rshSf.
It can be seen that the degree of coupling is dependent upon three factors: (i)

the ratio of the acoustic bulk stiffness to structure mass Ka/Ms; (ii) the
normalised geometric mode shape coupling term C 0 and C 0T; (iii) frequency
dependent terms A and B. The ®rst factor states that the coupling in a system
becomes weaker as Ka/Ms gets smaller, which is consistent with other
descriptions in the literature, for example references [1±4]. The second factor is a
non-dimensional quantity, and is determined by the geometric coupling between
the acoustic and structural modes. The third factor A and B, however, are
frequency dependent and each diagonal term of the matrices are typical of the
mobility of a single-degree-of-freedom mass±spring±damper system. The second
and third factors are combined together in equation (24a,b), and describe the
complicated frequency dependent behaviour. The resulting equations for weakly
coupled systems are given by:

a � Za�q� CYsg�, b � Ys�gÿ CTZaq�: �25a, b�
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In a similar way to Figure 3, the F±u and p±Q representations for a weakly
coupled system can be drawn by removing the coupled impedance and mobility
blocks.

4. EXPERIMENTAL WORK

To demonstrate the validity of the analytical model, an experiment was
performed using a rectangular enclosure as shown in Figure 6, and the
experimental results were compared with simulations generated using the model
described in Section 3. The enclosure consisted of ®ve acoustically rigid walls
and a simply supported ¯exible plate on the remaining side. To make the
acoustically rigid boundary condition, 25-mm thick plywood walls were used

Microphone

Flexible plate

Acoustic
source, Q

x1 L1

L2

L3

x2

y1

y2

x3

Accelerometer

Force, F

Figure 6. Experimental set-up to validate the analytical model for the structural±acoustic
system .

TABLE 1

Material properties of the experimental rig

Material
Density
(kg/m3)

Phase speed
(m/s)

Young's modulus
(N/m2)

Poisson's
ratio (�)

Damping
ratio (z)

Air 1�21 340 ± ± 0�01
Al 2770 ± 716 109 0�33 0�01

TABLE 2

The natural frequencies and geometric mode shape coupling coefficients of each uncoupled
system of the experimental rig

Order Plate 1 2 3 4 5 6
Type (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

Cavity Frequency (Hz) 141 157 184 222 270 330

1 (0,0,0) 0 1�0000 0 0�3333 0 0�2000 0
2 (1,0,0) 113 0 0�9428 0 0�3771 0 0�2424
3 (2,0,0) 227 ÿ0�4714 0 0�8485 0 0�3367 0
4 (3,0,0) 340 0 ÿ0�5657 0 0�8081 0 0�3143
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which were surrounded by 75-mm deep sand layers packed by an extra
container. To achieve the simply supported boundary condition for the plate,
1�25-mm steel strips were bolted around the perimeter of the plate. The design
concept is that the thin strip is relatively rigid to in-plane motion but ¯exible to
rotation and thus restricts out-of-plane motion of the plate but does not apply a
moment at the plate edges. The dimensions of the cavity were L16L26L3,
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Figure 7. Experimental (Ð) and predicted (± ± ±) responses to a point force excitation of the
structural±acoustic system shown in Figure 6. The predicted results were calculated using
equations (9) and (23). (a) Structural velocity (dB ref 10ÿ9 m/s); (b) acoustic pressure (dB ref 20 m
Pa).



110 S. M. KIM AND M. J. BRENNAN

where L1=1�5 m, L2=0�3 m, and L3=0�4 m, and the thickness of the
aluminium plate was 5 mm. The system was excited by either a loudspeaker
installed at the left-hand end of the enclosure, or a point force generated by a
PCB piezo-actuator located at (13L1/30, L2/2) on the plate, over the frequency
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Figure 8. Experimental (Ð) and predicted (± ± ±) acoustic pressure due to acoustic excitation
of the structural±acoustic system shown in Figure 6. The predicted results were calculated using
equations (9) and (25) for (a) and equations (9) and (23) for (b). (a) Acoustic response with limp
masses placed on the plate (dB ref 20 m Pa). A rigid-walled condition was assumed in the simu-
lations; (b) acoustic response with the masses removed from the plate (dB ref 20 m Pa). Full coup-
ling was assumed in the simulations.
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range 0±400 Hz. The plate acceleration was measured using an accelerometer
adjacent to the shaker and the acoustic pressure was measured using a
microphone, positioned approximately at position (4L1/10, L2/2, L3/2). An
HP3566A frequency response analyser was used to collect the data. The material
properties of air and aluminium (A1) used in the simulations are listed in
Table 1.
A total of four acoustic and six structural modes were assumed to contribute

to the coupled responses within the frequency range of interest and this number
was used in the simulations. Table 2 shows the calculated natural frequencies of
both uncoupled systems and their geometric mode-shape coupling coef®cients
normalised by their maximum value. The (m1, m2) and (n1, n2, n3) indicate the
indices of the mth plate mode and the nth cavity mode. Equations for the
analysis of the rectangular enclosure are given in the Appendix. The modal
damping ratios of the plate and the cavity were both assumed to be 0�01, and the
time constant of the ®rst acoustic mode was taken to be 0�2 s.
With the force actuator exciting the plate, the velocity at the excitation point

and the acoustic pressure response at the microphone location are compared
with their analytical results in Figure 7(a) and (b), respectively. The results
presented are per unit input force. Above about 80 Hz there is good agreement
between the experimental and theoretical results. In Figure 7(a), the small peak
after the 4th structural mode at 221�6 Hz is due to the strong coupling with the
second acoustic mode at 226�6 Hz. The poor experimental results at low
frequencies were because an inertial shaker was used that did not deliver a large
force at these frequencies, and hence there was a small signal to noise ratio.
The system was then excited using the loudspeaker. For one experiment heavy

limp masses were placed on the top plate in an attempt to realise a weakly
coupled system. Figure 8(a) shows the measured and predicted acoustic pressure
at the microphone position per unit source strength. The predicted response was
calculated using the equations for weak coupling, (9a) and (25a). It can be seen
that there is reasonably good agreement between the model and the experimental
results.
The ®nal experiment involved removing the limp masses from the plate and

repeating the measurement above. The results are shown in Figure 8(b) where
the predicted pressure was calculated using the fully coupled equations (9a) and
(23a). Examination of Figures 8(a) and (b) shows that both theoretical and
experimental results clearly demonstrate structural coupling effects near the
structural natural frequencies uncoupled. This result demonstrates the difference
between weak and full coupling, and validates the theoretical model.

5. CONCLUSIONS

This paper has presented a compact matrix formulation of the analytical
steady-state solution for a structural±acoustic coupled system. It is based on the
impedance-mobility approach using the uncoupled mobility of the structure and
the uncoupled acoustic impedance, both in modal co-ordinate systems. The
formulations are expressed in terms of vectors and matrices that are convenient
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for physical interpretation as well as numerical computation. Due to the
mismatch of the dimensions of impedance and mobility between structural
and acoustic systems new mechanical terms were introduced for the coupled
system analysis; coupled acoustic impedance and coupled structural mobility.
The F±u (force±velocity) and p±Q (pressure±source strength) diagrammatic
representations have also been introduced to represent the dynamic behaviour of
the coupled system in terms of impedance and mobility. A criterion for weak
coupling between a structure and an adjacent acoustic space has been
investigated both theoretically and experimentally. The experimental work
conducted has also validated the analytical model presented in this paper.
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APPENDIX: EQUATIONS FOR THE ANALYSIS OF A RECTANGULAR
ENCLOSURE

For a rigid-walled rectangular enclosure, the acoustic (n1, n2, n3) mode shape
functions normalised by its volume is given by [14]:

cn�x� �
������������
e1e2e3
p

cos
n1px1
L1

� �
cos

n2px2
L2

� �
cos

n3px3
L3

� �
, �A1�

where n1, n2 and n3 are integers and L1, L2 and L3 are the dimensions of the
rectangular enclosure in the x1, x2 and x3 co-ordinate directions. The
normalisation factors are given by ei=1 if ni=0 and ei=2 if nie 1 where the
subscript i can be 1, 2, and 3. The corresponding acoustic natural frequency is
given by:
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where co is the speed of sound in air. For a simply supported isotropic
rectangular plate of dimensions (L16L2), the plate (m1, m2) mode shape
function normalised by its surface area can be written as

fm�y� � 2 sin
m1py1
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� �
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where m1 and m2 are positive integers. The corresponding structural natural
frequency is given by:
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where the bending stiffness D is given by:

D � Eh3

12�1ÿ �2� �A5�

where, E is Young's modulus, � is Poisson's ratio of the plate, and h is the
thickness of the plate.
For the rectangular enclosure with the simply supported ¯exible plate wall, the

coupling coef®cient Cn,m between the nth acoustic mode (n1, n2, n3) and mth
structural mode (m1, m2) is given by [15]:
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